skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nishii, Kenichiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Human cortex is patterned by a complex and interdigitated web of large-scale functional networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial topography of cortical networks across individuals. While spatial network organization emerges across development, is stable over time, and is predictive of behavior, it is not yet clear to what extent genetic factors underlie interindividual differences in network topography. Here, leveraging a nonlinear multidimensional estimation of heritability, we provide evidence that individual variability in the size and topographic organization of cortical networks are under genetic control. Using twin and family data from the Human Connectome Project ( n = 1,023), we find increased variability and reduced heritability in the size of heteromodal association networks ( h 2 : M = 0.34, SD = 0.070), relative to unimodal sensory/motor cortex ( h 2 : M = 0.40, SD = 0.097). We then demonstrate that the spatial layout of cortical networks is influenced by genetics, using our multidimensional estimation of heritability ( h 2 - multi; M = 0.14, SD = 0.015). However, topographic heritability did not differ between heteromodal and unimodal networks. Genetic factors had a regionally variable influence on brain organization, such that the heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal cortex. Taken together, these data are consistent with relaxed genetic control of association cortices relative to primary sensory/motor regions and have implications for understanding population-level variability in brain functioning, guiding both individualized prediction and the interpretation of analyses that integrate genetics and neuroimaging. 
    more » « less
  2. null (Ed.)
    Abstract Humans survive and thrive through social exchange. Yet, social dependency also comes at a cost. Perceived social isolation, or loneliness, affects physical and mental health, cognitive performance, overall life expectancy, and increases vulnerability to Alzheimer’s disease-related dementias. Despite severe consequences on behavior and health, the neural basis of loneliness remains elusive. Using the UK Biobank population imaging-genetics cohort ( n  = ~40,000, aged 40–69 years when recruited, mean age = 54.9), we test for signatures of loneliness in grey matter morphology, intrinsic functional coupling, and fiber tract microstructure. The loneliness-linked neurobiological profiles converge on a collection of brain regions known as the ‘default network’. This higher associative network shows more consistent loneliness associations in grey matter volume than other cortical brain networks. Lonely individuals display stronger functional communication in the default network, and greater microstructural integrity of its fornix pathway. The findings fit with the possibility that the up-regulation of these neural circuits supports mentalizing, reminiscence and imagination to fill the social void. 
    more » « less
  3. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  4. The objective of this research is to evaluate the effects of cropping choices on land, water use for irrigation, and greenhouse gas emissions after introducing canola (Brassica napus L.) cultivation for the production of 60 million gallons of biodiesel per year. Characterization of regional farm-level cropping patterns and agronomic inputs and economic data are used to model the adoption of canola in place of the diverse incumbent cropping patterns in four regions of California: Northern and Southern San Joaquin Valleys, Sacramento Valley, and Southern California, using the Bioenergy Crop Adoption Model. The life cycle assessment approach is then used to assess environmental impacts due to cultivation of canola in place of the incumbent cropping patterns in terms of: (1) land use; (2) life-cycle greenhouse gas emissions due to direct land use change (kg CO2e ac-1); (3) greenhouse gas emissions due to irrigation water (kg CO2e ac-1); and (4) life-cycle greenhouse gas emissions expressed in grams of carbon dioxide equivalent per megajoule of biodiesel. Preliminary results show the adoption price of the canola with a yield of 1.5 U.S. tons per acre is estimated to be $481 per ton of canola in 2012 dollars at which point a total of 508,400 acres appear in canola cultivation. This land area (508, 400 acres) is equivalent to approximately 89 million gallons of biodiesel from canola per year given the assumptions stated in this study. Consequentially, crops that are less profitable are replaced with canola and greenhouse gas emissions due to irrigation water are reduced while maintaining a diversified percentage of the incumbent cropping patterns, as well as canola cultivation. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2026
  6. This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  7. This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  8. Top-quark pair production is observed in lead–lead ( Pb + Pb ) collisions at s NN = 5.02 TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb 1 . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is σ t t ¯ = 3.6 0.9 + 1.0 ( stat ) 0.5 + 0.8 ( syst ) μ b , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ b b ¯ ) and charm quarks (H→$$ c\overline{c} $$ c c ¯ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ s = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ b b ¯ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ c c ¯ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ b b ¯ andH→$$ c\overline{c} $$ c c ¯ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κcb|) to be less than 3.6 at 95% confidence level. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  10. The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026